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En utilisant le noweau frblant-incidence, reflexion-raseur Mq,, (3d -+ 

4p) monochromator/spectrometer, on a mesur6 les spectres bien-resolus des 
rayons X du Plasma de krypton, avec les cows tres grands du flux et aux on&s 
ultra-violets extremes et des rayons X doux. Le powoir nominal de la 
resolution de l'instmnt, E/AE, est B peu pr&s 300 dans ce regime d16nergie. 

On a observk, B 80.98, 80.35 et 79.73 eV, les trois (3d -+ 4p) lignes 
spectrales que le dipole permet. On a assign6, provisoirement, un pic large, 
B peu pr&s 82.3 eV, aux transitions qui resultent du Kr2+. On a observ6 
les effets sur des rayons X ( h V 5 )  de l'bnergie d'excitation. 

Abstract 

High resolution M,,, (3d -+ 4p) x-ray emission spectra from a kwton 
plasma were measured using a recently developed grazing-incidence reflection- 
grating monochromator/spectrometer with very high flux rates at extreme 
ultraviolet and soft x-ray wavelengths. The nominal resolving power of the 
instrument, E/AE, is about 300 in this energy range (-80 eV). 

Three dipole-allowed 3d -+ 4p emission lines were observed at 80.98 eV, 
80.35 eV and 79.73 eV. A broad peak at about 82.3 eV, is tentatively assigned 
to transitions resulting from KI?', and effects of excitation energy on M, , , 
x-ray emission were observed. 

In this report, high resolution Mq 5 x-ray emission spectra 
from a krypton plasma produced in the discharge region of a 
Penning-type sputtering source [1,2] are presented. The discharge 
was excited by application of a high potential difference (1-2 kV) 
and magnetic field (- 1.2 kgauss) between two aluminum cathodes 
and a grounded anode. In the evacuated region between these 
cathodes, the krypton gas was leaked in continuously to an 
equilibrium pressure. At some distance (200 mm) from the 
discharge region, a thermocouple gauge measured a gas pressure of 
-15 mtorr. The diffuse discharge, extending over -5 mm in 
diameter, was placed behind the entrance slit of the 
monochromator. A recently-developed reflection grating 
spectrometer/monochromator, which provides extremely high 
throughput in the extreme ultraviolet (W) and soft x-ray (SXR) 
spectral regions [3] was used. Based upon measurements of the 
grating efficiency at the wavelengths reported here, the net 
throughput of the instrument is estimated to be 2 x 
steradians. This includes the efficiency of a channel electron 
multiplier overcoated with MgF2 to enhance the photon detection 
efficiency, which was positioned to intercept the radiation 
passing through the exit slit of the monochromator. sufficiently 
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high count rates were provided to allow high resolution 
measurements of the spectral lines of krypton, i.e., at a nominal 
resolving power (E/AE) of approximately 300-500. 

Presented in Figure 1 is a wide scan of krypton plasma (along 
with aluminum) over the 100-200 A spectral region. This stepped- 
scan spectrum was obtained in about 30 mins. The prominent Al(1V) 
and Al(II1) spectroscopic lines were observed. An accurate energy 
(or wavelength) calibration of the spectrum presented in Fig. 1 
was obtained using A1 (IV) (2p6 -+ 2p5 3s) lines at 77.45 eV and 
76.68 eV [1,4]. The spectral features in Fig. 1 agree with the 
low resolution electron excited krypton M4,5 x-ray emission 
spectra [5] from a supersonic jet of krypton gas. 

Fig. 1. Wide scan spectrum of krypton (+ aluminum) over the 100- 
200 A spectral region from a Penning discharge tube. 
Prominent Al(1V) lines provided an accurate wavelength 
calibration. 

A detailed study of the 148-158 A spectral region was 
performed with higher resolution and better statistics, as shown 
in Figs. 2 and 3. The energies (wavelengths) of the prominent 
features in Figs. 2 and 3 are listed in Table 1. The detailed 
spectrum presented in Fig. 2 was obtained maintaining the source 
voltage at about 1.5 kV, which is below the binding energy of 
krypton-L electrons. The prominent features A,  B and C are 
identified as dipole-allowed 3d + 4p emission lines. These 
assignments were confirmed by the observed 1:2:3 intensity ratio 
of peaks in the order of decreasing photon energy as predicted by 
a simple one-electron model and the energy differences as derived 
from the measured spin-orbit splitting of 3d levels [6] and 4p 
levels [7] in krypton. The broad peak D is tentatively assigned 
to transitions resulting from XCr2+ (3d,4s) which can be produced 
in the plasma either from initial singPe ionizations followed by. 
Coster-Kronig decay, or from direct double ionization. Previous 
work by Deslattes et al. [I] has shown that Penning sources 
produce multiple ionized species. 

The Kr-M4,5 x-ray spectrum, presented in Fig. 3, was obtained 
with potential difference in the Penning source maintained at 2.2 
kV, which is sufficient to ionize L electrons in krypton (LI 
electronic binding energy is 1.9 keV). Comparing spectra 
presented in Fig. 2 with those in Fig. 3 (lower) obtained with the 



Table 1. The component wavelengths (energies) and assignments af 
major components in krypton plasma 

Peak Wavelength (A)/Energy (eV) ~ssignment 

A 155.5+0.1/79.73 Kr(3d5/zt4P3/z) 

A' 155.0+0.1/79.99 

B 154.3+0.1/80.35 Kr(3d3/2-4Pi/z) 

c 153.1+_0.1/80.98 Xr(3d3/2-4P3/2) 

D 150.6+0.2/82.31 m2+(3d 4s) 

138.7+0.2/89.39 ~r (3d84p6-3d94p5) 

same instrumental resolution (about 300), the feature A1is more 
prominent when the potential difference in the source is 2.2 kV. 
To resolve the feature A', the resolving power (E/AE) of the 
instrument was improved to about 500 by closing the entrance and 
exit slits. The spectrum thus obtained is presented in Fig. 3 
(upper): The feature A' is assigned as resulting from multiple 
lonizatlon*in krypton, which would be enhanced by Coster-Kronig 
decay of the LI hole state. Similar features were observed in 
L2,3 (2p + 3s) x-ray emission spectra of argon [8]. 

In summary, high resolution Kr-M4 5 x-ray emission spectra 
from a krypton plasma were measured. Accurate calibration of the 
prominent spectral features was obtained using Al(1V) lines at 
77.45 and 76.66 eV. The intensity of the three dipole-allowed 
3d-+4p emission lines agrees well with calculated intensities from 
a simple one-electron model. The multiple ionization features in 
Kr-M4 5 x-ray emission spectra were observed. 

A significant improvement in sensitivity could be made 
possible by simultaneously recording the spectrum upon a position- 
sensitive detector rather than the step-scanning mode utilized in 
this work. A recently developed high resolution spectrometer [9] 

Fig. 2 
A moderate resolution (-300) 
detailed study (background 
removed) of the krypton plasma 
with a potential difference in 
the source below the ionization 
threshold of all L electrons. 

0 

,. 
P 

Wovelength (%) 

would yield up to a factor of 100 higher increase in 
resolution. This instrument employs an aberration-corrected 
reflection grating, which permits use of the detector at normal 
incidence to the radiation, enabling position-sensitive detection 
which would yield a factor of 200 increase in sensitivity over the 
spectral range shown in Fig. 1. Combining such an instrument with 
the high flux and tunability available from proposed 1-2 GeV 
storage rings, these satellite features can be disentangled and 
applied to provide insight into understanding the fundamental 
behavior of atoms. 
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Fig. 3 
Detailed study (background 
removed) of krypton plasma with 
a potential difference in the 
source &ove the ionization 
threshold of all L electrons. 
Lower figure obtained with 
resolution (-300) and upper 
figure with higher resolution 
(-500). 
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